| PES

Indoor-Outdoor Positioning
for Emergency Staff

Grant Agreement No. 874391

D4.2: Wearable
device - EMS data

exchange protocol

IOPES

Document status

Call (part) identifier

UCPM-2019-PP-AG

Topic

UCPM-2019-PP-PREP-AG
Preparedness in civil protection and marine pollution

Grant Agreement
Number

874391

Project Acronym

IOPES

Project Title

Indoor-Outdoor Positioning for Emergency Staff

Deliverable Number

4.2

Title of the Deliverable

Wearable device — EMS data exchange protocol

Work Package

WP4

Type Report

Due date 30/09/2021
Issue date 21/10/2021
Version 1.0

Lead beneficiary CTTC

Contributors

J. Navarro (CTTC), S. F. Hinriksson and G. O
Gudbrandsson (SAReye)

Reviewers

E. Angelats, P. Espin, J. Navarro and M. E. Parés (CTTC)

Dissemination level

Public

This project has received funding from the European Commission, Directorate-General
Humanitarian Aid and Civil Protection (ECHO), under the call UCPM-2019-PP-AG.

D4.2: Wearable device — EMS data exchange protocol

IOPES

Revision history

Version Date Description
1.0 21/10/2021 | First version of the document.
Disclaimer

The content of this report represents the views of the author only and is his/her sole responsibility.
The European Commission does not accept any responsibility for use that may be made of the
information it contains.

D4.2: Wearable device — EMS data exchange protocol

IOPES

Table of Contents

N

No o &

Yo A =T U 0] g = o 1
gL oo LU Lot 4o o [P SRR 2
The IOPES data exchange protoCoLl (API) ..o sessesens 4
1.1, The get_token entry POINt........oo i e s 4
1.2. The create_trackers entry POiNt.....ccccoieiiii s 6
The C++ implementation of the IOPES APl ... 13
Reference doCUMENTES..... .o s s e r e e 14
INfOrmMative dOCUMENTS. ..ot e eneas 14
Annex: Doxygen doCUmMENTAtIONcociii e e 15

D4.2: Wearable device — EMS data exchange protocol

IOPES

List of tables

Table 1: The get_toKen entry POINt s ssessnsns
Table 2: The create_trackers entry POINt ... ssssssssssssssssssssssssssns
Table 3: the contents of the tracker (position) eNtity ...

D4.2: Wearable device — EMS data exchange protocol

IOPES

List of figures

Figure 1: IOPES components. In red: data exchange between the wearable device and

LTI =1 OO 2
Figure 2: The IOPES APl PrOtOCOL. ... ecereeseeesseesseessseesseesssessssssssesssesssssssssssssessssssssessssssssessssssssesssssssseses 4
Lo LU I T 1= (o] =T o T o U o TSP 5
FIgure 4: get_tOKEN = HT TP it sss s s sns s 5
Figure 5: get_token - CH + RESTSNAIP ...ttt sssessses s s s ssessaseees 5
Figure 6: get_token - C + LIBrary HBCUFL e eneaseees 6
Figure 7: Full-blown example of the body of the create_trackers endpoint........ccouereenennee 8
Figure 8: Create_traCkers = CUNML . et sses s ssssse s sssess s s s s s s sasenes 9
Figure 9: create_traCkers = HT TP . eceeeeeeeeesecssesseessesssesssssssesssessssessssssssssssssasssssssasesssnes 10
Figure 10: create_trackers - C# + ReStSharp.....ssssssssssssssssssssssssssens 11
Figure 11: create_trackers - C + library liBCUrL... o csesesscsssssssssssssssssssssssssssssssssnsens 12

D4.2: Wearable device — EMS data exchange protocol

IOPES

Acronyms

36 3rd Generation (mobile telephony).

4G 4th Generation (mobile telephony).

5G 5th Generation (mobile telephony).

API Application Programming Interface.
CPET Civil Protection Emergency Team.

EMS Emergency Management System.

HTTP HyperText Transfer Protocol.

IOPES Indoor-Outdoor Positioning for Emergency Staff.
JSON JavaScript Object Notation.

LTE Long Term Evolution (data transmission).
RD Reference Document.

REST REpresentational State Transfer (API).
RPAS Remotely Piloted Aircraft System.

SW Software.

URL Uniform Resource Locator.

D4.2: Wearable device — EMS data exchange protocol

IOPES

1. Executive summary

This document describes the mechanism that must be used to exchange data between an IOPES
wearable device and an EMS (Emergency Management System).

The task of the IOPES wearable devices is to compute the positions of their users in real-time,
no matter they are indoors or outdoors. Additionally, the said position must be delivered to the
EMS, so the members of the emergency teams may be always tracked by the staff managing the
emergency.

Therefore, and besides the need of a communication channel to make possible the remote
exchange of information — such as 3G, 4G or 5G —, it is necessary to describe how such
information will be transmitted between the wearable device and the EMS and vice versa. That
is, a protocol must be stated to avoid misunderstanding between these two endpoints and to
guarantee that information is correctly exchanged.

The task of this report is describing such protocol, implemented as a REST API (Application

Programming Interface), protocol that any application - including the one driving the IOPES
wearable device - must implement to make possible such communication with a target EMS.

D4.2: Wearable device — EMS data exchange protocol

IOPES

2. Introduction

The target of the IOPES project, as already stated in other deliverables such as [RD5], is to
provide Civil Protection & Emergency Teams (CPET) with the necessary tools to improve an
already operational Emergency Management System (EMS) - developed by one of the partners
of this project, more specifically SAReye).

Such improvements consists of, at least, (1) quickly producing and making available updated
cartography of the area affected by a disaster (either natural or man-made), so it may be used
in real-time (2) to track the positions of the members of the CPETs no matter whether they are
located outdoors or indoors, (3) using a lightweight, portable positioning device carried by every
CPET member, (4) guaranteeing that all data flows (location data) may be transmitted
independently of any preexisting infrastructures thanks to the use of a portable LTE/4G easily
deployable network infrastructure.

This document is focused on describing the way in which points (3) and (4) in the paragraph
above have been implemented from a very specific standpoint: the way to organize data so it is
correctly understood by both endpoints, that is, the positioning (wearable) device and the
Emergency Management System.

Exchanging data between these to components requires a communications channel, usually
implemented by mobile technologies such as 3G, 4G or 5G. Figure 1 depicts the structure and
relationships between the several components making the IOPES concept; the said
communication channel is highlighted there in red.

& 9\
©
0
©

éé

N ey

‘$\((())) i $\ | RPAS-based

fast mapping

/' LTE/5G *

o /—/ deployable

comms.
. @ Enhanced EMS
CPET equipped (live tracking +

MU
=
MU
AAC

with indoor post-mortem
outdoor analysis)
positioning
device

Figure 1: IOPES components. In red: data exchange between the wearable device and the EMS

D4.2: Wearable device — EMS data exchange protocol

IOPES

It is important to note, however, that this document does not describe the necessary underlying
technology required to implement these channels, such as dongles or integrated LTE/4G boards,
since the said technology is considered as one more hardware component integrating the
positioning device or the server where the EMS is embedded. On the contrary, the task of this
report is describing how the information travelling by these channels — whatever the hardware
or technology used to make possible such travel — must be organized to be understood by both
endpoints.

In short, a language or protocol leaving no room to misinterpretation has been defined. Both
clients (positioning devices, not only IOPES’ but any others built by third parties) and servers
(EMSs, whatever these are) must talk and understand that language to exchange positioning
data correctly and timely.

The importance of this language / protocol / API lies in the fact that it opens the door to other
developers willing to create their own wearable positioning devices, thus making the IOPES
concept available to other projects aiming at integrating seamless indoor / outdoor positioning
into other EMSs.

Section 3 describes such protocol — that is, the APl —in detail but making no commitments about
how to implement it. This point is capital since developers may choose between a plethora of
programming languages to implement the IOPES API. Describing the APl from such a neutral
standpoint has a direct impact on the ease of implementation of portable positioning devices,
since no restrictions are applied on how to perform such implementation.

Section 4, on the contrary, presents the specific implementation of the IOPES API that the IOPES
team developed for the project and that is actually embedded in the software driving the
positioning device. It has been created using the C++ programming language and it is one of the
outcomes of the project. Note that this section points to an annex including the formal
documentation generated by the Doxygen ([ID1]) documentation tool; therefore, the formatting
and style of the annex does not adhere of the official IOPES corporate image.

D4.2: Wearable device — EMS data exchange protocol

IOPES

3. The IOPES data exchange protocol (API)

This section presents the IOPES API from a neutral standpoint, that is, avoiding any references
to the way this API should be implemented or the programming language that should be used.
In this way, developers willing to interact with an IOPES-enabled EMS are free to choose the best
tools to develop their client (positioning devices) applications.

However, there is a prerequisite that must be honored to guarantee that any application relying
on this APl will work correctly. This prerequisite states that any EMS enabling the IOPES protocol
must implement a username / password / authorization token mechanism in order to identify
its users and to authorize the injection of data (positions).

This means that the usual set of credentials (username plus password) normally used to grant
the access to a service are not enough in this case. Instead, these credentials (1) must be used
to obtain an authorization token, which must then be used (2) in all further requests to exchange
data with the EMS.

Said this, the IOPES API defines only two entry points, namely “get_token” and “create_trackers”.
The first entry point is used to retrieve the aforementioned authorization token; the second one,
that is, “create_trackers” is the way to send positioning data to the EMS. Figure 2 depicts the
typical workflow that a positioning device must follow to identify itself and then send data for as
long as needed.

Prerrequisites
(user name +
password)

Send location
data

Get auth token

Yes

More positions?

Figure 2: The IOPES API protocol

The underlying protocol on which the API relies must be https and adheres to the REST model.

1.1. The get_token entry point

The task of the get_token entry point is to obtain (return) an authorization token guaranteeing
that any further data exchange request will be granted. It takes two input parameters, the
username and password of the requester — who must have been previously introduced in the
user’'s database of the EMS.

This is the first entry point that any client application implementing the IOPES protocol must call,

since it provides the necessary information (an authorization token) that will be requested in
later API calls.

D4.2: Wearable device — EMS data exchange protocol

IOPES

Table 1 describes it in detail.

Entry get_token

Description This endpoint provides the necessary token that should be used in all
API requests for authentication purposes. The token is valid for 24
hours, after that time a new token must be requested using this same
endpoint.

Method POST

URL https://{server_address}/token

Headers None (empty)

Body (url encoded)

key1 — string - The username of the requester.
key2 — string - The password of the requester.

Response

A JSON-formatted string containing the token sought. Its format is:
{token: the_token}, where the_token is a placeholder for the actual value
of the token returned by the entry point.

Table 1: The get_token entry point

Figure 3 to Figure 6 below, include some examples describing how to use this endpoint are given
in a variety of programming languages.

curl --location --request POST 'https:// /token' \
--data-urlencode 'keyl= \
--data-urlencode 'key2=

Figure 3: get_token - curl

POST /token HTTP/1.1

Host:
Content-Length: 55
keyl= &key2=

Figure 4: get_token - HTTP
var client = new RestClient ("https:// token") ;
client.Timeout = -1;
var request = new RestRequest (Method.POST);
request.AddParameter ("keyl", " ") ;
request.AddParameter ("key2", " ")
IRestResponse response = client.Execute (request);
Console.WriteLine (response.Content) ;

Figure 5: get_token - C# + RestSharp

D4.2: Wearable device — EMS data exchange protocol

IOPES

CURL *curl;

CURLcode res;

curl = curl easy init();

if (curl) {
curl easy setopt(curl, CURLOPT CUSTOMREQUEST, "POST");
curl easy setopt(curl, CURLOPT URL,

"https:// /token") ;
curl easy setopt(curl, CURLOPT FOLLOWLOCATION, 1L);
curl easy setopt(curl, CURLOPT DEFAULT PROTOCOL, "https");
struct curl slist *headers = NULL;
curl easy setopt(curl, CURLOPT HTTPHEADER, headers);
const char *data =

"keyl= skey2= ";
curl easy setopt(curl, CURLOPT POSTFIELDS, data);
res = curl easy perform(curl);

}

curl easy cleanup (curl);

Figure 6: get_token - C + library libcurl

1.2. The create_trackers entry point

Once that the authorization token has been retrieved using the endpoint get_token above, it is
possible to send the position of the portable device — together with other data — to the EMS using
the create_trackers endpoint.

This entry point may send an arbitrarily large number of positions at once — each of them
conveniently tagged with a timestamp and some additional information — thus reducing the
number of messages exchanged between client (portable device) and server (EMS). Obviously,
and depending on the desired refresh frequency, it may be necessary to send one position at a
time if the location of the sender must be updated as soon as possible by the receiver, not
allowing for delays to reduce the amount of data transmitted over the channel.

See Table 2 for a detailed description of the create_trackers entry point.

Entry get_token

Description Send either a single position or an variable length array of these to the
EMS. The sender must have write permissions in the server.

Method POST

URL https://{server_address}/trackers

Headers The authorization token obtained by get_token.

Body (raw data, in | Trackers — array — One or more data blocks including the positioning
JSON format) information. See Table 3 for details about this parameter.

user_id — OPTIONAL uuid - Identifier of the user the trackers (positions)
belongs to. If no user_id is provided, the user corresponding to the
credentials provided via the get_token entry point will be used.
resource_id — OPTIONAL uuid - Identifier of the resource the trackers
belong to. Again, if no resource_id is provided, the user corresponding to
the credentials provided by the get_token entry point will be used.
Response None

Table 2: The create_trackers entry point

D4.2: Wearable device — EMS data exchange protocol

IOPES

The trackers array consists of from 1 to n elements like the one described in

Table 3:

Timestamp ISO 8601 date & time in string form. The time at which this position
information was obtained. See [ID2] for details on this date & time
format.

latitude A double value. The latitude in decimal degrees.

longitude A double value. The longitude in decimal degrees.

accuracy A double value. The radius of uncertainty for the location, measured in
meters.

altitude A double value. The altitude in meters above the WGS 84 reference

ellipsoid.

altitude_accuracy

OPTIONAL - A double value. The accuracy of the altitude value, in
meters.

speed

OPTIONAL - A double value. The instantaneous speed of the device in
meters per second.

heading

OPTIONAL - A double value. Horizontal direction of travel of this device,
measured in degrees starting at due north and continuing clockwise
around the compass. Thus, north is 0 degrees, east is 90 degrees, south
is 180 degrees, and so on.

device_os

OPTIONAL - A string value. The operating system of the device recording
the trackers, i.e. Android, i0S, Garmin0S, etc.

system_version

OPTIONAL - The version of the system or operating system of the device
recording the positions.

device_information

OPTIONAL - A string value. Any additional information about the device
recording the positions.

Table 3: the contents of the tracker (position) entity

The array of trackers plus the user & resource identifiers must be written as a plain text string
using the JSON (see [ID3]) data model notation. The next example (see Figure 7) shows how to
prepare this data, which is the contents of the body for the create_trackers entry point. Note that
both the user_id and resource_id fields are optional; if the EMS interfacing with the positioning
device offers no such concepts, these two items may be safely omitted. Moreover, in Figure 7,
all fields have been shown, even those that are optional. Also note that, in this example, two
positions have been included; should only one be sent at once, only one structure beginning with
“timestamp” and ending with “device_information” would have been included.

Figure 8 to Figure 11 depict examples on how to call the create_trackers endpoint using several
programming languages or tools.

D4.2: Wearable device — EMS data exchange protocol

IOPES

"resource id": "the resource id if available",
"user id": "the user id if available",
"trackers": [
{
"timestamp": "2020-04-23T11:04:29+00:00",
"speed": 64,
"heading": 63,
"accuracy": 1,
"altitude": 63,
"device os": "IOPES Device",
"latitude": 64.1394958,
"longitude": -21.907643,
"system version": "11.5",
"altitude accuracy": 10,
"device information": "Best tracker ever"

"timestamp": "2020-04-23T11:57:29+00:00",
"speed": 34,

"heading": 85,

"accuracy": 1.2,

"altitude": 45,

"device os": "IOPES Device",

"latitude": 64.05679834,

"longitude": -22.017874,

"system version": "11.5",

"altitude accuracy": 10,

"device information": "Best tracker ever"

Figure 7: Full-blown example of the body of the create_trackers endpoint

D4.2: Wearable device — EMS data exchange protocol

IOPES

curl --location --request POST 'https://server address/trackers' \
--header 'Authorization: the token returned by get token \
-—-data-raw '/{

"resource_id": "the resource id if available",

"user id": "the user id if available",

"trackers": [
{
"timestamp": "2020-04-23T11:04:29+00:00",
"speed": 64,
"heading": 63,
"accuracy": 1,
"altitude": 63,
"device os": "IOPES Device",
"latitude": 64.1394958,
"longitude": -21.907643,
"system version": "11.5",
"altitude accuracy": 10,
"device information": "Best tracker ever"

"timestamp": "2020-04-23T11:57:29+00:00",
"speed": 34,

"heading": 85,

"accuracy": 1.2,

"altitude": 45,

"device os": "IOPES Device",

"latitude": 64.05679834,

"longitude": -22.017874,

"system version": "11.5",

"altitude accuracy": 10,

"device information": "Best tracker ever"

} 1

Figure 8: create_trackers - curl

D4.2: Wearable device — EMS data exchange protocol

IOPES

POST /trackers HTTP/1.1
Host: server address

Authorization:
Content-Length:

{

"resource_id": "the resource id if available",

the token returned by get token
708

"user id": "the user id if available",

"trackers":

{

[

"timestamp": "2020-04-23T11:04:29+00

"speed": 64,

"heading": 63,

"accuracy": 1,

"altitude": 63,

"device os": "IOPES Device",
"latitude": 64.1394958,
"longitude": -21.907643,
"system version": "11.5",
"altitude accuracy": 10,

: 00",

"device information": "Best tracker ever"

"timestamp": "2020-04-23T11:57:29+400:00",

"speed": 34,

"heading": 85,

"accuracy": 1.2,

"altitude": 45,

"device os": "IOPES Device",
"latitude": 64.05679834,
"longitude": -22.017874,
"system version": "11.5",
"altitude accuracy": 10,

"device information": "Best tracker

ever"

Figure 9: create_trackers - HTTP

D4.2: Wearable device — EMS data exchange protocol

10

IOPES

var client = new RestClient("https://serveriaddress/trackers");
client.Timeout = -1;

var request = new RestRequest (Method.POST);

request.AddHeader ("Authorization", "the token returned by get token");
var body = @"{" + "\n" +

@" ""resource id"": ""the resource id if available""," + "\n" +

@" ""user id"": "" he user id if available""," + "\n" +

@" ""trackers"": [" + "\n" +

Q" {" + "\n" +

@" ""timestamp"": ""2020-04-23T11:04:29+00:00"","™ + "\n"
g" ""speed"": 64," + "\n" +

Q" ""heading"": 63," + "\n" +

@" ""accuracy"": 1," + "\n" +

@" ""altitude"": 63," + "\n" +

@" ""device os"": ""IOPES Device""," + "\n" +

@" ""latitude"": 64.1394958," + "\n" +

Q" ""longitude"": -21.907643," + "\n" +

@" ""system version"": ""11.5"","™ + "\n" +

@" ""altituae_accuracy"": 10,"™ + "\n" +

Q" ""device information"": ""Best tracker ever""" + "\n"
-@I;" }I" + "\n" +

Q" {" + "\n" +

@" ""timestamp"": ""2020-04-23T11:57:29+00:00"","™ + "\n"
g" ""speed"": 34," + "\n" +

Q" ""heading"": 85," + "\n" +

@" ""accuracy"": 1.2," + "\n" +

@" ""altitude"": 45," + "\n" +

@" ""device os"": ""IOPES Device""," + "\n" +

@" ""latitude™": 64.05679834," + "\n" +

Q" ""longitude"": -22.017874," + "\n" +

@" ""system version"": ""11.5"","™ 4+ "\n" +

@" ""altituae_accuracy"": 10,"™ + "\n" +

Q" ""device information"": ""Best tracker ever""" + "\n"
Jé“ "o+ "\n" o+

Q" 1"+ "\n" +

@mi";

request.AddParameter ("text/plain", body, ParameterType.RequestBody) ;
IRestResponse response = client.Execute (request);

Console.WriteLine (response.Content) ;

Figure 10: create_trackers - C# + RestSharp

D4.2: Wearable device — EMS data exchange protocol

11

IOPES

CURL *curl;
CURLcode res;
curl = curl easy init();
if (curl) {
curl easy setopt(curl, CURLOPT CUSTOMREQUEST, "POST");
curl easy setopt(curl, CURLOPT URL, "https://server address
/trackers") ;
curl easy setopt(curl, CURLOPT FOLLOWLOCATION, 1L);
curl easy setopt(curl, CURLOPT DEFAULT PROTOCOL, "https");
struct curl slist *headers = NULL;
headers = curl slist append(headers, "Authorization:
the token returned by get token");
curl easy setopt(curl, CURLOPT HTTPHEADER, headers);

const char *data = "{\n \"resource 1id\": \"
the resource id if available \",\n \"user id\": \"
the user id if available \",\n \"trackers\": [\n {\n
\"timestamp\": \"2020-04-23T11:04:29+00:00\",\n
\"speed\": 64,\n \"heading\": 63,\n
\"accuracy\": 1,\n \"altitude\": 63,\n
\"device os\": \"IOPES Device\",\n \"latitude\":
64.1394958,\n \"longitude\": -21.907643,\n
\"system version\": \"11.5\",\n
\"altitude accuracy\": 10,\n \"device information\":
\"bla\"\n },\n {\n \"timestamp\": \"2020-04-
23T11:57:29+00:00\", \n \"speed\": 64,\n
\"heading\": 63,\n \"accuracy\": 1,\n
\"altitude\": 63,\n \"device os\": \"IOPES
Device\", \n \"latitude\": 64.0494958, \n
\"longitude\": -21.907643,\n \"system version\":
\"11.5\",\n \"altitude accuracy\": 10,\n
\"device information\": \"bla\"\n \n I\n}";
curl easy setopt(curl, CURLOPT POSTFIELDS, data);
res = curl easy perform(curl);

}

curl easy cleanup (curl);

Figure 11: create_trackers - C + library libcurl

D4.2: Wearable device — EMS data exchange protocol

12

IOPES

4. The C++ implementation of the IOPES API

The team involved in the IOPES project has developed a working C++ implementation of the
IOPES API described in section 3. It is, in fact, part of the software driving the IOPES portable
positioning device, so it has been tested in real life environments and shown that it is fully
operational.

It relies in two external libraries, namely libcurl ([ID4]) and SimpleJSON ([ID5]) to implement the
file transfer over the internet and the coding and decoding of JSON strings respectively.

Note that there are two alternative classes to work (1) with files — just for software testing
purposes — and (2) over the internet, actually exchanging data with an IOPES capable EMS
implementing its side of the entry points defined by the API.

Offering a class interacting with files instead of the actual EMS IOPES-capable servers is an extra
feature allowing developers to test the software in their portable positioning devices without
having to rely on neither in existing communication channels nor in an EMS willing to accept
fake, test data.

The IOPES_API library has been thoroughly documented using the Doxygen ([ID1]) tool. Such
documentation is appended as an annex in section 7; note, however, that since it has been
generated with the automated tool Doxygen, the format of the resulting document does not
adhere to the style guides set by the IOPES consortium.

D4.2: Wearable device — EMS data exchange protocol

13

IOPES

5. Reference documents

[RD1]
[RD2]
[RD3]

[RD4]
[RD5]

IOPES - Grant Agreement (GA) — GA 874391.

IOPES - Consortium Agreement (CA) - Version 1.0.

Union Civil Protection Mechanism. Prevention and Preparedness Projects in Civil
Protection and Marine Pollution. Call for proposals document UCPM-2019-PP-AG -
Version 1.0.

IOPES - Deliverable D3.1, “User requirements”.

IOPES - Deliverable D4.1. “System architecture definition”.

6. Informative documents

[ID1]
[ID2]
[ID3]
[ID4]

[ID5]

Doxygen. https://www.doxygen.nl/index.html (20th October 2021).

ISO 8601:2004. https://www.iso.org/standard/40874.html . (20th October 2021).
ECMA-404 The JSON Data Interchange Standard. https://www.json.org/json-en.html
(20th October 2021).

libcurl — the multiprotocol file transfer library. https://curl.se/libcurl/ . (20th October
2021).

SimpleJSON library. https://github.com/MJPA/SimpleJSON . (20th October 2021).

D4.2: Wearable device — EMS data exchange protocol

14

IOPES

7. Annex: Doxygen documentation

The next and following pages (up to the end of this document) contain the Doxygen
documentation for the C++ implementation of the IOPES API (see section 4).

D4.2: Wearable device — EMS data exchange protocol

15

IOPES_API

version 1.0

Generated by Doxygen 1.9.1

1 The IOPES project team's C++ implementation of the IOPES API

2 A full working example
2.1 Aboutthe example L
22Thefullexample e

3 Hierarchical Index

3.1 Class Hierarchy e e

4 Class Index
41 Class List e e

5 File Index
B5AFileList e e

6 Class Documentation

6.1 IOPES_APIClass Reference e
6.1.1 Detailed Description

6.1.2 Member Function Documentation L o
6.1.2.1 create_trackers()

6.1.22get token() e
6.1.23set_channel()

6.2 IOPES_API curlClass Reference e
6.2.1 Detailed Description
6.2.2 Member Function Documentation L
6.2.2.1 create_trackers()

6.2.2.2get token()
6.2.23set_channel() L

6.2.2.4 tracker_to_json_string()
6.2.2.51trackers_to_json()

6.3 IOPES_API fileClass Reference e
6.3.1 Detailed Description
6.3.2 Member Function Documentation Lo
6.3.2.1 create_trackers()

6.3.22get token()
6.3.23set_channel()

6.4 IOPES_API_response Struct Reference
6.4.1 Detailed Description
6.4.2 Member Data Documentation
6.4.2.1response_data L e

6.4.2.2SiZ€ e

6.5 IOPES_API tracker Struct Reference
6.5.1 Detailed Description

6.5.2 Member Data Documentation e e e

11
11

Generated by Doxygen

6.5.2.1 altitude L 25
6.5.22date_time e 25
6.5.2.3device info e e e 25
6.5.2.4deVICE _0S e e e e e e 25

6.5.25got heading L 25

6.5.2.6got speed L 25
6.5.2.7got_z_accuracy L e e e e 26
6.5.28heading L 26

6.5.29 latitude 26
6.5.2.10longitude 26
6.5.2.11speed 26

6.5.2.12 SyStem_Version e e 26
6.5.2.13XY_aACCUraCy« o v i i e e e e e 26

6.5.2.14 Z_aCCUraCy o v i e e e e e 26

7 File Documentation 27
7.1 IOPES_APIl.cpp File Reference e 27
7.1.1 Detailed Description 27

7.2 |I0PES_APILhpp File Reference 28
7.21 Detailed Description e 28

7.3 IOPES_API_curl.cpp File Reference 29
7.3.1 Detailed Description L 29

7.4 IOPES_API_curl.hpp File Reference 29
7.41 Detailed Description 30
7.510PES_API file.cpp File Reference 30
7.5.1 Detailed Description 31

7.6 IOPES_API file.hpp File Reference 31
7.6.1 Detailed Description 32

7.7 IOPES_API_structures.hpp File Reference 32
7.7.1 Detailed Description 33
Index 35

Generated by Doxygen

Chapter 1

The IOPES project team's C++ implementation of
the IOPES API

This is the IOPES project team's C++ implementation of the IOPES API as defined in the document "D4.2 - Wearable
device - EMS data exchange protocol". More information about the IOPES project may be found here: https«
://iopes—project.eu/.

The code described here has been organized in a very simple set of classes:

+ IOPES_API

— IOPES_API_file
— IOPES_API_curl

The first class in the list above (IOPES_API) is an abstract one, so it must never be directly instantiated. It is
provided just to define the set of methods and common attributes that any descendant class must implement / have.

On the contrary, IOPES_API_file is a fully usable class targeted at debugging code. This pseudo-implementation of
the IOPES API simulates the protocol there defined, providing the whole set of method (API entry points). However,
these methods are fake, since either do nothing (get_token()) or log data to a disk file instead of sending the
information to an IOPES-enabled EMS server. The idea behind this class is providing a mechanism to test the
software using the IOPES API, providing "real" IOPES API calls, freeing the developers of the need of having a full-
fledged server accepting their requests. The information "sent" by create_trackers() is logged in a disk file, being
possible to check whether the appropriate information is "transmitted".

Finally, class IOPES_API_curl is a full-fledged implementation of the protocol relying on the curl (aka libcurl) library.
In this case, an operative, IOPES-enabled EMS is required to run the software using this class.

This C++ implementation of the IOPES API relies in two libraries:

* SimpleJSON. It is used to code / decode JSON strings that are exchanged between the client and the
server. The source code for this library is packed along with this implementation of the IOPES API for sim-
plicity reasons. Should any newer version of this library be used, then it would be required to download the
new fonts from the URL above.

+ libcurl. Used to actually exchange data between the client and the EMS. This library is not included in
the package and must be installed before using this one.

A full example using the IOPES_API_curl class may be found in A full working example.

Generated by Doxygen

https://iopes-project.eu/
https://iopes-project.eu/
https://github.com/MJPA/SimpleJSON
https://curl.se/libcurl/

The IOPES project team's C++ implementation of the IOPES API

Generated by Doxygen

Chapter 2

A full working example

2.1 About the example

The following example shows how to exchange data between a portable device (or any other client) and a IOPES-
enabled EMS.

A few comments on the example:

* ltuses the IOPES_API_curl class to communicate with an EMS, actually sending data. If no EMS is available,
it is possible to use files following the next steps:

— Change sentence '#include "IOPES_API_curl.hpp™ to '#include "IOPES_API_file.hpp™.
— Change the declaration "IOPES_API_curl api;" to "IOPES_API_file api;".

— Change the sentence 'URL = "https://cd18c941-a793-4a4c-bdb4-692b0091f7d9.mock.pstmn.io";' to
something similar to 'URL = "path_to_some_file";' (where "path_to_some_file" actually points to a disk
file to write data).

» The data to be sent to the EMS is a fake. The first part of the example program builds synthetic positions
instead of capturing these from any positioning device.

+ Just a set of two positions is sent (at once). A real program would iterate fetching positions and sending these
to some EMS.

« The URL used in the example points to some server that was willing to accept connections at some time.
Change the URL to that of your server. Note that it must be IOPES-enabled (that is, willing to accept get_«
token() and create_trackers() requests)-

2.2 The full example

// The next header file includes the definitions required to use
// the curl-based implementation of the IOPES API.
#include "IOPES_API_curl.hpp"
// This one is required for "cout".
#include <iostream>
using namespace std;
int
main
(void)
{
{

string password;
string resource_id;
int status;
string token;

Generated by Doxygen

A full working example

vector<IOPES_API_tracker> trackers;

string URL;

string user_id;

string username;

/7 - - - - -
//

// Build some FAKE data to show how to use the interface.
IOPES_API_tracker trackerl;
IOPES_API_tracker tracker2;

// Both the user and resource ids are OPTIONAL.

// simply set these to the empty string

user_id

resource_id =

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

The

empty

field

trackerl.
trackerl.
trackerl.
trackerl.
trackerl.
trackerl.
trackerl.

trackerl
trackerl

tracker2.

tracker2
tracker2

"tracker<x>"
have retrieved.

Note that the first tracker
of data that may be transferred to the server,
one contains only the minimum fields

On the contrary,
to the value it must hold,

= "This is the user id";

string

to false.

date_time
longitude
latitude
Xy_accuracy
altitude
got_z_accuracy
zZ_accuracy

. speed

.got_speed
trackerl.
trackerl.
trackerl.
trackerl.
trackerl.
tracker2.
tracker2.
tracker2.
tracker2.
tracker2.
tracker2.

heading
got_heading
device_os
system_version
device_info
date_time
longitude
latitude
Xy_accuracy
altitude
Z_accuracy

got_z_accuracy

. speed

.got_speed
tracker2.
tracker2.
tracker2.
tracker2.
tracker2.

heading
got_heading
device_os
system_version
device_info

In this example,

"This is the resource id";

When an optional string is not available,

If you don’t have any,

(nmy .

structures hold the several positions that we
we set two of these at once.
(position)

includes the whole set
while the second
(the mandatory ones) .

just set it to the

(""). When an optional field is not available,
set it to any value,

but set the corresponding got_<fieldname>

when an optional string is available,
and for optional numerical fields,

set these to the value they must contain and the corresponding
got_<fieldname> to true.

"2020-11-02T06
1.2345;
6.7890;
1.2;
4.56789;
true;
1.2345678;
901.234567;
true;
89012.3456;
true;

set it

:18:24+00:00";

"IOPES wearable";

"1.0";

"Serial number
"2020-11-02T06
-180.123456;
89.1234567;
8.9;

123.456789;
1.2345678; //
//
false;
333.333333; //
false;
444.444444; /)
false;
/7
/1
l|"; //

1234567";
:18:24+01:00";

Meaningless, see got_z_accuracy
below.

Meaningless, see got_speed below.
Meaningless, see got_heading below.

No device_os available ("").
No system_version available ("").
No device_info available ("").

// Add the trackers to the trackers array.
trackers.push_back (trackerl);
trackers.push_back (tracker2);

//
//

// This is our object to deal with the IOPES API.
IOPES_API_curl api;

//
//
//
//
//
//

"/token"

or

Set the URL of the server.
to use to contact YOUR server.
"/trackers"
take care of this by itself.

to the URL.

Replace the URL below by the one you have
DON’T append the entry points
The IOPES_API_curl object will

(such as

URL = "https://cdl8c941-a793-4a4c-bdb4-692b0091£7d9.mock.pstmn.io";
api.set_channel (URL) ;

//

// We’ll request now an authorization token using our username & password.

// Replace

//
username
password
status =
// Check
if
{
// Bad

return

(status

= "this_is_the_username";
= "this_is_the_password";

api.get_token (username,

whether we succeeded or not.

1= 0)
luck,

-1;

we’ve got problems.
cout « "get_token returned an error code: "

the values below by those given by your EMS provider.

password, token);

« status « endl;

Generated by Doxygen

2.2 The full example

// Oh, yes! We’ve got an authorization token!
cout « "The token retrieved is ’'" « token « "'" « endl;

}

//

// Now, create trackers (send positions to the server). Note that:
// - We’re using the token just obtained,

// — We always pass the user_id and resource_id, even when we don’t
// have these (in such cases, set them to the empty string, "").
// - We pass a whole array of trackers (positions). Such array my
// contain just one tracker object, if we prefer to do it this

// way.

//

// This step should be repeated whilst there are positions (trackers)
// to send to the server.

//
status = api.create_trackers (token, user_id, resource_id, trackers);
if (status != 0)
{
cout « "create_trackers returned an error code: " « status « endl;

return -1;

R
u
D

cout « "create_trackers succeeded." « endl;
}
// That’s all.
return 0;

Generated by Doxygen

A full working example

Generated by Doxygen

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

IOPES_API . . . e e e e e 13
IOPES_APIL_curl e e 16
IOPES_API file e 20

IOPES_APL_IesSpoNnSe o o v o e e e e e e e e e e e e 23

IOPES_API_tracker e e e e e e e 24

Generated by Doxygen

Hierarchical Index

Generated by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

IOPES_API

Abstract class definining the entry points implementing the IOPES API, no matter the device

usedtosenddata 13
IOPES_API_curl

Implementation of the IOPES APl using the curl library 16
IOPES_API_file

Implementation of the IOPES API using files as the backend. This class will must be used for

testing purposes ONLY e e e 20
IOPES_API_response

Structure used to retrieve responses after calling an entry point 23
IOPES_API_tracker

Structure defining a tracker (position) L L 24

Generated by Doxygen

10

Class Index

Generated by Doxygen

Chapter 5

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

IOPES_API.cpp

Implementation file for IOPES_APLhpp 27
IOPES_API.hpp

Abstract class definining the entry points implementing the IOPES API, no matter the device

usedtosenddata 28
IOPES_API_curl.cpp

Implementation file for IOPES_API_curl.cpp 29
IOPES_API_curl.hpp

Implementation of the IOPES APl using the curl library 29
IOPES_API_file.cpp

Implementation file for IOPES_API_filehppo oo 30

IOPES_API_file.hpp
Implementation of the IOPES API using files as the backend. This class will must be used for
testing purposes ONLY e e e 31
IOPES_API_structures.hpp
Header file defining useful data structures for the C++ implementation of the IOPES API using
the libcurl library (IOPES_API_curl.hpp) o 32

Generated by Doxygen

12

File Index

Generated by Doxygen

Chapter 6

Class Documentation

6.1 IOPES_API Class Reference

Abstract class definining the entry points implementing the IOPES API, no matter the device used to send data.
#include <IOPES_API.hpp>

Inheritance diagram for IOPES_API:

IOPES_API

IOPES_API_curl IOPES_API file

Public Member Functions

« virtual int create_trackers (const string &token, const string &user_id, const string &resource_id, const
vector< IOPES_API_tracker > &trackers)=0

Create trackers - notify location data.
« virtual int get_token (const string &username, const string &password, string &token)

Get the authorization token.
+ IOPES_API (void)

Default constructor.
« virtual int set_channel (const string &channel_id)=0

Set the address / name / path of the resource used to send / store data.
« virtual ~IOPES_API (void)

Destructor.

Generated by Doxygen

14 Class Documentation

Protected Attributes
» string channel_id_

The identification of the channel / resource used to send or store data. Heir classes may interpret this resource as a
file name, URL or whatever kind of resource they use.

6.1.1 Detailed Description

Abstract class definining the entry points implementing the IOPES API, no matter the device used to send data.

This class is the base to implement the IOPES API (defined in IOPES' deliverable "D4.2: Wearable device - EMS
data exchange protocol").

This one is just an abstract class setting the framework that all derived classes will have to implement. Therefore, it
should never be instantiated. Instead, the heir classes are the ones to use.

Each descendant class must implement a different way (i.e., using different file transfer technologies, such as the
curl library).

6.1.2 Member Function Documentation

6.1.2.1 create_trackers()

virtual int IOPES_API::create_trackers (
const string & token,
const string & user._id,
const string & resource_id,

const vector< IOPES_API_tracker > & trackers) [pure virtual]

Create trackers - notify location data.

Parameters
token The authorization token retrieved by get_token().
user_id The user the trackers belon to. OPTIONAL: set it to the empty string (") when no user id is

available.
resource« | ldentifier of the resource the trackers belong to. OPTIONAL: set it to the empty string (") when
_id no resource id is available.

trackers The set of trackers (positions) to report.
response The response received once the trackers have been reported.
Returns

An error code. Heir classes may extend the list of return codes, but at least, the "successful completion" one
(value: 0) must be present:

+ 0: Successful completion.

Generated by Doxygen

6.1 IOPES_API Class Reference 15

Implemented in IOPES_API_file, and IOPES_API_curl.

6.1.2.2 get_token()

int IOPES_API::get_token (
const string & username,
const string & password,

string & token) [virtual]

Get the authorization token.

Parameters

username | The user name used to retrieve the authorization token.
password | The password of the user used to retrieve the authorization token.

token Output. The requested authorization token.

Returns

An error code. Heir classes may define extra return codes, but the implementation for this parent class just
return one:

+ 0: Successful completion.

Reimplemented in IOPES_API_curl.

6.1.2.3 set_channel()

virtual int IOPES_API::set_channel (

const string & channel_id) [pure virtual]
Set the address / name / path of the resource used to send / store data.

This method must be used by all descendant classes to define the "destination” where the information will be
retrieved from (using get_token()) or sent to (by means of create_trackers()).

Depending on the descendant class used, this "channel_id" may take several forms, such as a file path or a URL.
Check the documentation for the particular descendant classes to learn what kind of channel identifier is expected.

Parameters

channel~ Path, URL or whatever kind of resource id to identify the channel used to send data.
_id

Generated by Doxygen

16 Class Documentation

Returns

An error code. At least, the "successful completion" code with a return value 0 must be implemented. Heir
classes may extend this list of codes.

+ 0: Successful completion.

Implemented in IOPES_API_file, and IOPES_API_curl.

The documentation for this class was generated from the following files:

* IOPES_API.hpp
» IOPES_API.cpp

6.2 IOPES_API_curl Class Reference

Implementation of the IOPES API using the curl library.
#include <IOPES_API_curl.hpp>

Inheritance diagram for IOPES_API_curl:

IOPES_API

IOPES_API_curl

Collaboration diagram for IOPES_API_curl:

IOPES_API

IOPES_API_curl

Generated by Doxygen

6.2 IOPES_API_curl Class Reference 17

Public Member Functions

« virtual int create_trackers (const string &token, const string &user_id, const string &resource_id, const
vector< IOPES_API_tracker > &trackers) override

Create trackers - notify location data.
« virtual int get_token (const string &username, const string &password, string &token) override

Get the authorization token.
+ IOPES_API_curl (void)

Default constructor.
« virtual int set_channel (const string &channel_id) override

Set the path to the file where data will be written. Open the file.
« virtual ~IOPES_API_curl (void)

Destructor.

Protected Member Functions

« string tracker_to_json_string (const IOPES_API_tracker &tracker)

Format the contents of a single tracker structure as a JSON string adhering to the IOPES' API specs.
« string trackers_to_json (const string &user_id, const string &resource_id, const vector< IOPES_API_tracker
> &trackers)

Format a whole set of tracker structures plus the optional user and resource identifiers as a JSON string adhering to
the IOPES' specs.

Protected Attributes

« string channel_id__

The identification of the channel / resource used to send or store data. Heir classes may interpret this resource as a
file name, URL or whatever kind of resource they use.

» string URL_token_

The URL for the "token" entry point.
+ string URL_trackers_

The URL for the "create _trakers" entry point.

6.2.1 Detailed Description

Implementation of the IOPES API using the curl library.

This class implements the IOPES API using the curl (aka "libcurl"). It also realies on the SimpleJSON library to
code / decode JSON strings. Developers need, therefore, to guarantee that these two libraries are available when
compiling this code.

See IOPES' deliverable "D4.2: Wearable device - EMS data exchange protocol" for more information about where
to obtain both libcurl and SimpleJSON.

As a fully functional class, an IOPES-enabled EMS must be available to run code relying on this class. For debugging
purposes, requiring no such server, see IOPES_API_file.

6.2.2 Member Function Documentation

Generated by Doxygen

18 Class Documentation

6.2.2.1 create_trackers()

int IOPES_API_curl::create_trackers (
const string & token,
const string & user._id,
const string & resource_id,

const vector< IOPES_API_tracker > & trackers) [override], [virtual]

Create trackers - notify location data.

Parameters
token The authorization token retrieved by get_token().
user_id The user the trackers belong to. OPTIONAL: set it to the empty string (") when no user id is

available.
resource« | ldentifier of the resource the trackers belong to. OPTIONAL: set it to the empty string (") when
_id no resource id is available.

trackers The set of trackers (positions) to report.

Returns

An error code.

+ 0: Successful completion.
» 1: Unable to set up the curl library.

 2: Error sending tracker data to the server.

Implements IOPES_API.

6.2.2.2 get_token()

int IOPES_API_curl::get_token (
const string & username,
const string & password,

string & token) [override], [virtual]

Get the authorization token.

Parameters

username | The user name used to retrieve the authorization token.
password | The password of the user used to retrieve the authorization token.
token Output. The requested authorization token.

Returns

An error code.

» 0: Successful completion.

Generated by Doxygen

6.2 IOPES_API_curl Class Reference 19

» 1: Unable to set up the curl library.
» 2: Unable to retrieve the token (connection problems).

+ 3: Malformed response received from the server. Unable, therefore, to retrieve the token.

Reimplemented from IOPES_API.

6.2.2.3 set_channel()

int IOPES_API_curl::set_channel (

const string & channel_id) [override], [virtuall]
Set the path to the file where data will be written. Open the file.

This class requires URLSs to identify the target server. See parameter channel_id.

Parameters

channel— | URL (including the preceding protocol such as "https://") of the IOPES-enabled EMS to connect to.
_id

Returns

An error code that will always be zero, since setting an URL will never fail. The returned error code is provided
for compability reasons only.

+ 0: Successful completion.

Implements IOPES_API.

6.2.2.4 tracker_to_json_string()

string IOPES_API_curl::tracker_to_json_string (
const IOPES_API_tracker & tracker) [protected]

Format the contents of a single tracker structure as a JSON string adhering to the IOPES' API specs.

Parameters

user_id The user the trackers belong to. OPTIONAL: set it to the empty string ("") when no user id is
available.

resource« | ldentifier of the resource the trackers belong to. OPTIONAL: set it to the empty string (") when
_id no resource id is available.

tracker The tracker whose values have to be formatted as a JSON string.

Generated by Doxygen

20 Class Documentation

6.2.2.5 trackers_to_json()

string IOPES_API_curl::trackers_to_json (
const string & user_id,
const string & resource_id,

const vector< IOPES_API_tracker > & trackers) [protected]

Format a whole set of tracker structures plus the optional user and resource identifiers as a JSON string adhering
to the IOPES' specs.

Parameters

user_id The user identifier. OPTIONAL. Set it to the empty string ("") when no user identifier is available.

resource«~ | The resource identifier. OPTIONAL. Set it to the empty string (") when no resource identifier is
_id available.

The set of trackers that must be formatted. Note that the array containing the trackers may have just
one element, if desired.

Returns

A string, formatted as JSON, containing the whole dataset formatted according to IOPES' API needs.

The documentation for this class was generated from the following files:

* IOPES_API_curl.hpp
* IOPES_API_curl.cpp

6.3 IOPES_API file Class Reference

Implementation of the IOPES API using files as the backend. This class will must be used for testing purposes
ONLY.

#include <IOPES_API_file.hpp>

Inheritance diagram for IOPES_API_file:

IOPES_API

IOPES_AP|_file

Generated by Doxygen

6.3 IOPES_API file Class Reference 21

Collaboration diagram for IOPES_API_file:

IOPES_API

IOPES_API_file

Public Member Functions

« virtual int create_trackers (const string &token, const string &user_id, const string &resource_id, const
vector< IOPES_API_tracker > &trackers) override

Create trackers - notify location data.

« virtual int get_token (const string &username, const string &password, string &token)
Get the authorization token.

» |IOPES_API_file (void)
Default constructor.

« virtual int set_channel (const string &channel_id) override

Set the path to the file where data will be written. Open the file.
« virtual ~IOPES_API_file (void)

Destructor.

Protected Attributes

* string channel_id_

The identification of the channel / resource used to send or store data. Heir classes may interpret this resource as a
file name, URL or whatever kind of resource they use.
« ofstream ofile_

The file to write data to.
* bool ready_

Flag stating whether the output file is open.

6.3.1 Detailed Description

Implementation of the IOPES API using files as the backend. This class will must be used for testing purposes
ONLY.

This class emulates the IOPES_API using files to incarnate the remote EMS.

The only goal of this class is to provide developers with an IOPES API - compatible class requiring no remote
servers, so when developing software for a portable positioning device, it will be possible to simulate that the
transmission of data is taking place.

Instead of sending the said data to some EMS server, it is written to files, so it is possible to check if the information
"sent" to the fake server (the output file) has been correctly "received".

Note that since no authorization token may be ever provided by a file system, the get_token() method is not overriden
here. Therefore, users of this class will use this parent class' get_token() method implicitly.

Generated by Doxygen

22 Class Documentation

6.3.2 Member Function Documentation

6.3.2.1 create_trackers()

int IOPES_API_file::create_trackers (
const string & token,
const string & user_id,
const string & resource_id,

const vector< IOPES_API_tracker > & trackers) [override], [virtuall]
Create trackers - notify location data.
This method will never complain about the validity of the token parameter, since interacting with a file system implies

that it will never be possible to obtain an "appropriate" one. Therefore, pass whatever value for this parameter (even
the one returned by this class parent's get_token() method.

Parameters
token The authorization token retrieved by get_token(). Use this parent class' get_token() to retrieve it.
user_id The user the trackers belon to. OPTIONAL: set it to the empty string ("") when no user id is

available.
resource« | Identifier of the resource the trackers belong to. OPTIONAL: set it to the empty string (") when
_id no resource id is available.

trackers The set of trackers (positions) to report.

Returns

An error code.

+ 0: Successful completion.
» 1: Error writing the trackers to the output file: file not open.

« 2: Error writing to the output file.

Implements IOPES_API.

6.3.2.2 get_token()

int IOPES_API::get_token (
const string & username,
const string & password,

string & token) [virtual], [inherited]

Get the authorization token.

Parameters

username | The user name used to retrieve the authorization token.
password | The password of the user used to retrieve the authorization token.

token Output. The requested authorization token. Generated by Doxygen

6.4 IOPES_API_response Struct Reference 23

Returns

An error code. Heir classes may define extra return codes, but the implementation for this parent class just
return one:

+ 0: Successful completion.

Reimplemented in IOPES_API_curl.

6.3.2.3 set_channel()

int IOPES_API_file::set_channel (

const string & channel_id) [override], [virtual]
Set the path to the file where data will be written. Open the file.

This class uses paths to files on disk to play the role of the "channel_id".

Parameters

channel— Path to the file where data will be written.
_id

Returns

An error code.

+ 0: Successful completion.

« 1: Error opening the output file.

Implements IOPES_API.

The documentation for this class was generated from the following files:

« IOPES_API_file.hpp
- IOPES_API_file.cpp

6.4 IOPES_API _response Struct Reference

Structure used to retrieve responses after calling an entry point.

#include <IOPES_API_structures.hpp>

Public Attributes

« char * response_data
* size_tsize

Generated by Doxygen

24

Class Documentation

6.4.1 Detailed Description

Structure used to retrieve responses after calling an entry point.

6.4.2 Member Data Documentation

6.4.2.1 response_data

char* IOPES_API_response::response_data

The response's text.

6.4.2.2 size

size_t IOPES_API_response::size

The number of bytes (size of) in the response.

The documentation for this struct was generated from the following file:

» |IOPES_API_structures.hpp

6.5 IOPES_API_tracker Struct Reference

Structure defining a tracker (position)

#include <IOPES_API_structures.hpp>

Public Attributes

* double altitude

« string date_time

« string device_info

» string device_os

*+ bool got_heading

* bool got_speed

* bool got_z_accuracy
+ double heading

+ double latitude

* double longitude

+ double speed

* string system_version
» double xy_accuracy

 double z_accuracy

Generated by Doxygen

6.5 IOPES_API_tracker Struct Reference 25

6.5.1 Detailed Description

Structure defining a tracker (position)

6.5.2 Member Data Documentation

6.5.2.1 altitude

double IOPES_API_tracker::altitude

The altitude in meters above the WGS 84 reference ellipsoid.

6.5.2.2 date_time

string IOPES_API_tracker::date_time

The time at which this position information was obtained, in ISO 8601 format.

6.5.2.3 device_info

string IOPES_API_tracker::device_info

OPTIONAL. Any additional information of the device recording data. Set it to the empty string (") when no additional
information about the device is available.

6.5.2.4 device_os

string IOPES_API_tracker::device_os

OPTIONAL. The operating system of the device the trackers, i.e. Android, iOS, GarminOS, etc. Set it to the empty
string ("") when no device OS information is available.

6.5.2.5 got_heading

bool IOPES_API_tracker::got_heading

Flag stating whether the optional field heading holds a meaningful value.

6.5.2.6 got_speed

bool IOPES_API_tracker::got_speed

Flag stating whether the optional field holds a meaningful value.

Generated by Doxygen

26 Class Documentation

6.5.2.7 got_z_accuracy

bool IOPES_API_tracker::got_z_accuracy

Flag stating whether the optional field z_accuracy holds a valid value.
6.5.2.8 heading

double IOPES_API_tracker::heading

OPTIONAL. Horizontal direction of travel of this device, measured in degrees starting at due north and continuing
clockwise around the compass. Thus, north is 0 degrees, east is 90 degrees, south is 180 degrees, and so on.
Valid only when got_heading is true.

6.5.2.9 latitude

double IOPES_API_tracker::latitude

The longitude in decimal degrees.

6.5.2.10 longitude

double IOPES_API_tracker::longitude

The latitude in decimal degrees.

6.5.2.11 speed

double IOPES_API_tracker::speed

OPTIONAL. The instantaneous speed of the device in meters per second. Valid only when got_speed is true.
6.5.2.12 system_version

string IOPES_API_tracker::system_version

OPTIONAL. The version of the system or operating system of the device recording the trackers. Set it to the empty
string (") when no information about the system's version is available.

6.5.2.13 xy_accuracy

double IOPES_API_tracker::xy_accuracy

The radius of uncertainty for the location, measured in meters.

6.5.2.14 z_accuracy

double IOPES_API_tracker::z_accuracy
OPTIONAL. The accuracy of the altitude value, in meters. Valid only when got_z_accuracy is true.

The documentation for this struct was generated from the following file:

* IOPES_API_structures.hpp

Generated by Doxygen

Chapter 7

File Documentation

7.1 10PES_APIl.cpp File Reference

Implementation file for IOPES_API.hpp.

#include "IOPES_API.hpp"
Include dependency graph for IOPES_API.cpp:

IOPES_APl.cpp

l

IOPES_API.hpp

N

IOPES_API_structures.hpp

RN

string vector fstream

7.1.1 Detailed Description

Implementation file for IOPES_API.hpp.

Generated by Doxygen

28 File Documentation

7.2 10PES_APLhpp File Reference

Abstract class definining the entry points implementing the IOPES API, no matter the device used to send data.

#include "IOPES_API_structures.hpp"
#include <string>
Include dependency graph for IOPES_API.hpp:

IOPES_API.hpp

IOPES_API_structures.hpp

.

string vector fstream

This graph shows which files directly or indirectly include this file:

IOPES_APLhpp
IOPES_APl.cpp | | IOPES_API_curl.hpp | | IOPES_API_file.hpp |
| IOPES_API_curl.cpp | | IOPES_API_file.cpp |

Classes

» class IOPES_API

Abstract class definining the entry points implementing the IOPES API, no matter the device used to send data.

7.2.1 Detailed Description

Abstract class definining the entry points implementing the IOPES API, no matter the device used to send data.

Generated by Doxygen

7.3 IOPES_API_curl.cpp File Reference

29

7.3 I10PES_API_curl.cpp File Reference

Implementation file for IOPES_API_curl.cpp.

#include

"IOPES_API_ curl.hpp"

Include dependency graph for IOPES_API_curl.cpp:

IOPES_API_curl.cpp

IOPES_API_curl.hpp

IOPES_APL.hpp iostream cstdlib cstring curl/curl.h JSON.h

A
| IOPES_API_structures.hpp I

N

string fstream vector

7.3.1 Detailed Description

Implementation file for IOPES_API_curl.cpp.

7.4 10PES_API_curl.hpp File Reference

Implementation of the IOPES API using the curl library.

#include
#include
#include
#include
#include
#include
#include
#include

"IOPES_API.hpp"
<iostream>
<cstdlib>
<cstring>
<string>
<vector>
<curl/curl.h>
"JSON.h"

Include dependency graph for IOPES_API_curl.hpp:

IOPES_API_curl.hpp

iostream cstdlib curl/curl.h JSON.h

IOPES_APL.hpp cstring

| IOPES_API_structures.hpp |

Generated by Doxygen

30

File Documentation

This graph shows which files directly or indirectly include this file:

IOPES_API_curl.hpp

IOPES_API_curl.cpp

Classes

» class IOPES_API_curl
Implementation of the IOPES API using the curl library.

7.4.1 Detailed Description

Implementation of the IOPES API using the curl library.

7.5 IOPES_API file.cpp File Reference

Implementation file for IOPES_API_file.hpp.

#include "IOPES_API_file.hpp"
Include dependency graph for IOPES_API_file.cpp:

| IOPES_API_file.cpp |

;

IOPES_AP|_file.hpp |

N

iomanip

IOPES_APl.hpp

IOPES_API_structures.hpp |

3

string vector fstream

Generated by Doxygen

7.6 IOPES_API_file.hpp File Reference 31

7.5.1 Detailed Description

Implementation file for IOPES_API_file.hpp.

7.6 IOPES_API file.hpp File Reference

Implementation of the IOPES API using files as the backend. This class will must be used for testing purposes

ONLY.

#include
#include
#include
#include
#include

"IOPES_API.hpp"
<fstream>
<iomanip>
<string>
<vector>

Include dependency graph for IOPES_API_file.hpp:

IOPES_API_file.hpp |

N

iomanip

IOPES_API.hpp

IOPES_API_structures.hpp |

)

string vector fstream

This graph shows which files directly or indirectly include this file:

IOPES_API_file.hpp

IOPES_API file.cpp

Generated by Doxygen

32 File Documentation

Classes

» class IOPES_API file
Implementation of the IOPES API using files as the backend. This class will must be used for testing purposes ONLY.

7.6.1 Detailed Description

Implementation of the IOPES API using files as the backend. This class will must be used for testing purposes
ONLY.

7.7 10PES_API_structures.hpp File Reference

Header file defining useful data structures for the C++ implementation of the IOPES API using the libcurl library
(IOPES_API_curl.hpp).

#include <string>
#include <vector>
#include <fstream>
Include dependency graph for IOPES_API_structures.hpp:

IOPES_API_structures.hpp

string vector fstream

This graph shows which files directly or indirectly include this file:

IOPES_API_structures.hpp

A
IOPES_APL.hpp
IOPES_API.cpp | | IOPES_API_curl.hpp | | IOPES_API_file.hpp |
| IOPES_API_curl.cpp | | IOPES_API_file.cpp |

Generated by Doxygen

7.7 IOPES_API_structures.hpp File Reference 33

Classes

« struct IOPES_API_response

Structure used to retrieve responses after calling an entry point.
« struct IOPES_API_tracker

Structure defining a tracker (position)

7.7.1 Detailed Description

Header file defining useful data structures for the C++ implementation of the IOPES API using the libcurl library
(IOPES_API_curl.hpp).

Generated by Doxygen

34

File Documentation

Generated by Doxygen

Index

altitude
IOPES_API_tracker, 25

create_trackers
IOPES_API, 14
IOPES_API_curl, 17
IOPES_API file, 22

date_time
IOPES_API_tracker, 25

device_info
IOPES_API_tracker, 25

device_os
IOPES_API_tracker, 25

get_token
IOPES_API, 15
IOPES_API_curl, 18
IOPES_API_file, 22
got_heading
IOPES_API_tracker, 25
got_speed
IOPES_API_tracker, 25
got_z_accuracy
IOPES_API_tracker, 25

heading
IOPES_API_tracker, 26

IOPES_API, 13
create_trackers, 14
get_token, 15
set_channel, 15

IOPES_API.cpp, 27

IOPES_API.hpp, 28

IOPES_API_curl, 16
create_trackers, 17
get_token, 18
set_channel, 19
tracker_to_json_string, 19
trackers_to_json, 19

IOPES_API_curl.cpp, 29

IOPES_API_curl.hpp, 29

IOPES_API_file, 20
create_trackers, 22
get_token, 22
set_channel, 23

IOPES_API_file.cpp, 30

IOPES_API_file.hpp, 31

IOPES_API_response, 23
response_data, 24

size, 24
IOPES_API_structures.hpp, 32
IOPES_API_tracker, 24

altitude, 25

date_time, 25

device_info, 25

device os, 25

got_heading, 25

got_speed, 25

got_z_accuracy, 25

heading, 26

latitude, 26

longitude, 26

speed, 26

system_version, 26

Xy_accuracy, 26

Z_accuracy, 26

latitude
IOPES_API_tracker, 26
longitude
IOPES_API_tracker, 26

response_data
IOPES_API_response, 24

set_channel
IOPES_API, 15
IOPES_API_curl, 19
IOPES_API_file, 23
size
IOPES_API_response, 24
speed
IOPES_API_tracker, 26
system_version
IOPES_API_tracker, 26

tracker_to_json_string
IOPES_API_curl, 19

trackers_to_json
IOPES_API_curl, 19

Xy_accuracy
IOPES_API_tracker, 26

Z_accuracy
IOPES_API_tracker, 26

Generated by Doxygen

IOPES

Indoor-Outdoor Positioning
for Emergency Staff

	1 The IOPES project team's C++ implementation of the IOPES API
	2 A full working example
	2.1 About the example
	2.2 The full example

	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 File Index
	5.1 File List

	6 Class Documentation
	6.1 IOPES_API Class Reference
	6.1.1 Detailed Description
	6.1.2 Member Function Documentation
	6.1.2.1 create_trackers()
	6.1.2.2 get_token()
	6.1.2.3 set_channel()

	6.2 IOPES_API_curl Class Reference
	6.2.1 Detailed Description
	6.2.2 Member Function Documentation
	6.2.2.1 create_trackers()
	6.2.2.2 get_token()
	6.2.2.3 set_channel()
	6.2.2.4 tracker_to_json_string()
	6.2.2.5 trackers_to_json()

	6.3 IOPES_API_file Class Reference
	6.3.1 Detailed Description
	6.3.2 Member Function Documentation
	6.3.2.1 create_trackers()
	6.3.2.2 get_token()
	6.3.2.3 set_channel()

	6.4 IOPES_API_response Struct Reference
	6.4.1 Detailed Description
	6.4.2 Member Data Documentation
	6.4.2.1 response_data
	6.4.2.2 size

	6.5 IOPES_API_tracker Struct Reference
	6.5.1 Detailed Description
	6.5.2 Member Data Documentation
	6.5.2.1 altitude
	6.5.2.2 date_time
	6.5.2.3 device_info
	6.5.2.4 device_os
	6.5.2.5 got_heading
	6.5.2.6 got_speed
	6.5.2.7 got_z_accuracy
	6.5.2.8 heading
	6.5.2.9 latitude
	6.5.2.10 longitude
	6.5.2.11 speed
	6.5.2.12 system_version
	6.5.2.13 xy_accuracy
	6.5.2.14 z_accuracy

	7 File Documentation
	7.1 IOPES_API.cpp File Reference
	7.1.1 Detailed Description

	7.2 IOPES_API.hpp File Reference
	7.2.1 Detailed Description

	7.3 IOPES_API_curl.cpp File Reference
	7.3.1 Detailed Description

	7.4 IOPES_API_curl.hpp File Reference
	7.4.1 Detailed Description

	7.5 IOPES_API_file.cpp File Reference
	7.5.1 Detailed Description

	7.6 IOPES_API_file.hpp File Reference
	7.6.1 Detailed Description

	7.7 IOPES_API_structures.hpp File Reference
	7.7.1 Detailed Description

	Index

